CONTENTS

01 Overpass
 Spring 2023
 Ellis Island, New York, New York
 03

02 Urban Village
 Fall 2021
 Melrose, Bronx, New York
 12

03 <Redemolish> the <Redevelopment>/ 제개발
 Fall 2022
 Gangnam, Seoul, Korea
 20

04 Hudson Valley Meditating Sanctuary
 Spring 2022
 Hyde Park, Poughkeepsie, New York
 28

05 PS 64 School
 Spring 2021
 Alphabet City, Manhattan, New York
 32

06 In the Air
 Fall 2020
 Morningside Height, Manhattan, New York
 36

07 PS 64 School Construction Documents
 Fall 2021
 Alphabet City, Manhattan, New York
 40

08 Vertical Transportation
 Spring 2022
 44

08 Other Work

47
Advanced Studio VI
Spring 2023
Partner: Zixiao Zhu
Instructor: Karla Rothstein

<Overpass>
Immigrants are a huge portion of the demographic composition of New York City. Immigrants comprise 37.2 percent of the city’s population and 44.2 percent of the total labor force. The map recorded the density of migrants in the entire New York City, and locations of the health department (Green), where the family members can get the death certificate from for the dead. The ferry docks are able to deal with corpse transportation. It is connected to the health department to show the convenience and difficulties to deal with the death of a family member for the living.

The health department is not primarily located in the densely populated areas, the white hatch behind the road line. Many communities, including those with strong connections to their homeland and ethnicity, have been overlooked when it comes to addressing death rates. We also did some analysis on the water level change of Ellis island in the following 100 years.

The water level rise in the future 20 years reaches 1 ft above current level, potentially floods over the ground level. Dislocation and displacement is experienced by most migrants. This project aims to capture the essence of liminality between death and place, invoking a sense of distance between New York and immigrants’ homelands.
Composting is the natural process of recycling organic matter, such as leaves and food scraps, into a valuable fertilizer that can enrich soil and plants. Different from cremation or embalming burial, the human composting process provides an alternative end of life by reintegrating the body back to earth. The 1 cubic yard of decomposed soil from one human body becomes a sustainable and transformative infrastructure of humans that transcends the significance of the soul.

The intention of our project is to re-establish a relationship between land and life. Addressing the sorrow and grief of death within a displaced environment and culture, the project provides an alternative form of belonging and reinstates lost kinship for the deceased migrant.

Model Image

A series of physical tactics were made to experiment the liminal quality of this coexistence.

Although co-existing within the same spatial framework, the observable quality of the black and white strings against different backgrounds is rather ambiguous.

The model analyzes this observative fluctuation. The lines appear and disappear along the change of background not only echoing the situational character of migrants, but also invokes our spatial design.

The continuous accumulation, integration and deterioration of soil from human composting would become the means of sculpting the space within this human compost facility. Meanwhile becoming the thread connecting the migrants and the land.

Spatial Recomposition throughout time

Composting is the natural process of recycling organic matter, such as leaves and food scraps, into a valuable fertilizer that can enrich soil and plants. Different from cremation or embalming burial, the human composting process provides an alternative end of life by reintegrating the body back to earth. The 1 cubic yard of decomposed soil from one human body becomes a sustainable and transformative infrastructure of humans that transcends the significance of the soul.

The intention of our project is to re-establish a relationship between land and life. Addressing the sorrow and grief of death within a displaced environment and culture, the project provides an alternative form of belonging and reinstates lost kinship for the deceased migrant.
From the qualitative envisions, a series of modular islands are developed to allow for the gradual buildup of soil over time. Roughly, one island has a usage from 16-20 years. The islands serve as the foundation for funerary events and self-mourning. The interconnectivity of them allows people to move in between, fostering a sense of community and shared grief.

The **double mesh module** is semi-enclosed by the double mesh walls that contain compost soil from the tower to host the funeral. Soil is accumulated in the double mesh wall to create a series of experiences for events. Over time, vegetation begins to sprout from walls that have aged and weathered. This type of wall serves as a poignant reminder of the inevitable cycle of life and death.

The **single mesh module** is enclosed by single mesh walls to allow soil being accumulated along the wall and gently sliding down to take over the floor. The narrow hallways and intimate rooms for mourning aims to provide a more private atmosphere for individuals to contemplate as the soil accumulates by time.

The greenhouses on each island provide different climate systems that accommodate different climate zones. It creates a profound link between the livings and their distant motherlands.

The Outdoor Green Space reproduces the landscape of New York, coexisting in harmony with the greenhouses on each island with distinct vegetations.
The Transportation Pipe and kits are located under the roof of the floor, which pours the soil onto the edge of the walls. As the soil being accumulated, vegetation starts to grow out of it onto the mesh walls and columns, creating an immersed natural environment for audience to mourn and contemplate.
Soil:
After total of 60 days (composting & settling), the soil is loaded to the empty vessels for distribution. The mechanical setup is linked from the tower to the transitional island and then to the funeral islands. The containers travel on tracks situated along the edge of the meshes to distribute soil, allowing for a more even layering effect.

Structure:
The towers is deeply anchored into the riverbed as they need great dead load capacity. The first level of the tower is concrete V-columns, based on the study that will need to resist flooding. All modular islands have a buoyant foundation with steel construction.

Funeral Routes:
The funeral route starts from the point people arrive on the transitional dock spaces. The body along with the relatives will head to the ceremonial space on the modular islands. After all, the body will go along the elevators and be sent to the compost tower through the second level.

Water Routes:
Water routes act as a main character in the entire circulation system of the project. The spacing between the islands are calculated to allow ships to pass. They are mainly used for corps’ transportation in the steps of funerals.

All modular islands are connected to the compost tower, which mainly host all the human compost facilities, which will become the soil source. At the same time, connection islands will bridge the tower and the funeral islands. It hosts mainly the docking of ferries and centralizing soil room for soil distribution.
The continuous accumulation, integration and deterioration of soil from human composing would become the means of sculpting the space within this human compost facility. Meanwhile becoming the thread connecting the migrants and the land. The soil beneath the survivors’ feet, oft-overlooked and unassuming, holds a marvel of potential. It is a testament to the ingenuity of nature, for it can take on the form of architecture itself. Solid partitions, enclosed spaces - all can be crafted from the very soil upon which we tread.

Moving from the solemn to the verdant, the soil is also capable of nurturing lush vegetation in greenhouses and outdoor parks. Cultivated with careful attention to the temperature and moisture of diverse ecological regions, these habitats become immersive and familiar for flora from distant homelands. It is a unifying force, connecting individuals across disparate geographies and forging meaningful connections between them.
The Transportation Pipe and kits are located under the roof of the floor, which pours the soil onto the edge of the walls. As the soil being accumulated, vegetation starts to grow out of it onto the mesh walls and columns, creating an immersed natural environment for audience to mourn and contemplate.
Urban Village
The Value Proposition formula describes the relationship between ARCHITECTURE, MANUFACTURING, and CONSTRUCTION.

The aims are to lower the vacancy by providing the future residents with multiple options in rental process, and decrease the hard costs through a series of prefabrications throughout the manufacturing and construction process.

The prefabricated kitchens, bathrooms, and duct work are adaptable and provide possibilities for the unit layout. The prefabrication process of the assemblies and the unit happens at the same time, decreasing unnecessary time and budget for the entire construction on site.
Located at the corner of the building on each level, CO-LIVING space is designed for studio and 1b1b users allows them to share a kitchen and a laundry. With the CO-LIVING space, the area of each unit will be reorganized and the rent price will be lowered to benefit people with less budget on living.
BLDG STRUCTURE, COMPONENTS & MATERIALS

- Insulation
- Aluminum Studs & Aluminum Casing
- Steel Braces
- Concrete Bldg Core
- Insulation
- Rectangular Steel Tube
- CLT Floor/Slab
- W Shape I-beam

ELEVATION
SECTION B
SECTION A
The very organized structure allows the units to fit in fast and easily. The same-length columns are arrayed on the site with designated distance in order for the beams to be manufactured and assembled with the columns easier. The easily built structure method is able to improve productivity, quality, and increase schedule certainty compared to traditional stick-built construction.
The overall on-site construction process starts with the settled grid of columns, easy and fast to build. The building blocks are connected by either units or indoor/outdoor corridors which interlace different buildings and create interactions between the residents both three dimensionally. Flexible indoor/outdoor spaces also provide the residents with possibilities of hosting various activities, such as studying, meeting, or hosting parties, which build better connections between residents.

The windows of the units are all facing appropriate directions with gratifying views of the landscape or surrounding blocks without losing privacy.
< Redemolish >
the
< Redevelopment >
/ 재개발
Demolition and Construction from South Korea

Many redevelopments are taking place in Gangnam and Gangbuk, Korea. Demolition and construction occur frequently during the redevelopment process, which increases the concentration of dust in the atmosphere. Dust from the construction process spreads into the atmosphere and accumulates in the human lungs. How should we look at these air problems?

Density of Redevelopment Area

Dust Pathway from Demolition and Construction

Located in Seoul, one of the most developed cities in Asia, this project aims to reinforce the phenomenon of unreasonable demolitions and redevelopments and the dust from it on human city and urban environment.

Dust lung has been a very common occupational disease especially in Asia, where a large number of development and redevelopment happen. The toxic airborne dust spreads everywhere around the site and damages the human body and the environment.

From the research and investigations on construction sites and the political and economical phenomenon behind it, the severeness of implosion and the dust generated from it needs to be addressed in an emphatic way for the government, landlords, and citizens from all aspects.

After the 1990s, in Korea, the government’s decision on building apartments has stimulated the apartment market and generated REDEVELOPMENT in the city. The generated dust from REDEVELOPMENT at the same time spreaded out but locked in the city for its mountaineous landscape.

The intervention WALL aims to memorizes, visualizes and showcases dust in front of all people in the city.

With the occur of implosion, dust is diffused by gravity and wind. The diffusion range is determined by the weight of dust molecules. It enters the wall through layers in the modules and remains at different locations. The pipes are different in sizes to vary the effect of dust landing. The audience in the wall experiences the specialized dust generated from people’s desire for REDEVELOPMENT. The narrowness of stairs and platforms allows the audience to focus more on the dust and inner site.
Detomate Building: An electrical current sets off the explosives and causes the building to collapse inward.

Load Explosives: Explosives are drilled into tower level columns and a few upper stories to create an easier breakdown.

Prepare the site: Crews remove non-load-bearing walls and weaken support columns.

The dust from a demolition is not evenly spread in the air. The explosives are usually located in the ground levels which means the density of dust is larger outside of these levels.
The dust visualizing module is inspired by the shapes and structures of bronchus in the lung. It is a pipe with meshes on the two sides and two versions of ETFE light structured capsule on the sidewalk side.
According to weight and size of inhalable particles, thoracic particles and respirable particles, the pipes are able to sift them up and the dust particles fly for very different distances and time inside of the tube. The latex coated on the inner side of efti is able to catch and showcase dust to pedestrians. The double layer efti bucket hangs on the building side and collects the dust particles in all sizes. Its translucency gives a blurry silhouette of the site behind it.
The structure and modules are all in standard sizes for easy assembling. The structure is a heavy steel frame to resist the implosion force and heat. The circulation is mainly on the lower levels and varies from different sizes of modules.
This wall structure intervention shows a timeline of demolition gradually and allows people from further distance to notice it. The original fences connect the walls to prevent people from entering the site. The overall structure works as a translucent layer between the dirty site and the clean, organized urban area. Its aesthetics attracts people’s attention and reinforces the influence of the demolition site on the city and people’s daily life.
The collage shows the extravagant life of the high class comparing to the suffering life of the fugitives. With the help of the quakers and their meeting houses, the fugitives would be able to rest and hide from the slave catchers.

The key points of the memorial are memorization and contemplation, something that cannot be recorded as a part of the history. Visitors are brought here to a similar situation and time period which better help them learn and understand the background history.

The quaker meeting houses locates in a dispersed way along the Hudson River bank, as well as the routes of the escaping of the fugitives across the northeastern states.

The research of the site starts from the Fredonia Lane and the surrounding landscape, including the tree covers on the land. The area of the tree coverage decides the exposure of the ground earth to the sunlight, which creates a different experience with the area without sunlight.

The aim of this diagram is to discuss the idea of moments, experiences, architecture being distributed on the site in a scattered way according to the landscape of the site and the historical context of the quaker meeting houses along Hudson Valley.
The building complex sits in a scattered way on top of the Fredonia Lane to let the path guide the audience to experience the architecture.

The wood trellis aims to bring back the moments of the fugitives farming on this land in the past. The abstract form with the prosperously growing vegetations "inside of" the trellis gives visitors a brand new healthy experience which is opposite to the experience of the northern parts.

The architecture complex perceptibly help people explore, learn, experience, and contemplate the sanctuary in the nature, corresponding to the historical moments ever happened in the area. The architecture itself does not play a demanding role but exposes the visitors the outside and allow them to be the leader of the experiences.

This museum aims not to be merely a conventional concrete box that locks the visitors' senses and emotions inside. Instead, the architecture complex is both physically and conceptually deconstructed to help itself blend into the surroundings and let people express themselves and meditate in a more broader way.
Herman Hertzberger juxtaposed many identical classrooms to form an atypical shaped corridor. He believed that the space outside of the classroom should be paid the same attention, as children at young age will be hesitant to join or communicate with others when they see a group is already formed. This strategy inspired the internal circulations of the new PS 64.

The design starts from the rearrangement of the classrooms as boxes. Vertically and horizontally shifted, the classrooms generates a variety of pathways in between.

Within the existing footprint, the displacement of classrooms and corridors provide more flexible circulation for kids who need space both outdoor and indoor to take their breaks.
The shifting classrooms form the exterior corridors along the facade that allow students to enjoy fresh air. The vertical misalignment of floors with glass curtain walls create opportunities to bring natural light and elements inside the building that can be taken care of by children to make the school feel more like a home.

The original brick walls of the classrooms are deconstructed to rows of brick columns on a grid that create porous connections between the spaces inside and outside of the classrooms.

The translucent polycarbonate panels serve as secondary walls that also blur the boundaries of the classrooms. The “gray transitional spaces” formed by these new classrooms vary in size, and can be flexibly functioned to offer children with different experiences.
The sound of the urban area is mainly generated from pedestrians and traffic on the streets. Compared to sound in the urban area, the sound in the park shows more chaotic patterns but in an even way, consisting of various objects, including the sound of the leaves and branches, birds, other land animals like squirrels or rabbits, and people, etc. They all become components of the sound over the park and above the ground.
The direction of sound in urban areas is from the ground to the sky, different from that of the park which is more disordered and unpredictable and dense in the air. There is something very vital in the air in the park that people hardly experience on the streets. To move such experience from the ground to the middle of the trees becomes interesting. These spaces at different levels create shortcuts for visitors to see more, smell more, and listen to more above the ground. People get to touch the leaves on tall trees on a light weighted structure that let them truly engage in the surroundings.

The keypoint of the project is to attract people’s attention to engage in the park more, on their lame, tired, or busy days’ afternoons, or in fresh mornings. It extends from the tall retaining wall on the Morningside Height across the park to Harlem. It welcomes people on two sides of the park, just like a bond allowing residents and visitors to travel as well as enjoy between the two areas.

The structure is supported by many thin columns mimicking the tree trunks among the woods. The transparency of the structure allow spaces below not depressing and still prorous and open. This perpendicular structure and columns below could be seen as an expression of the rigid city grid, in a more chaotic way. The lightweight mesh above the beams are too light to be seen that the whole structure looks like floating in the air.

STRUCTURE ANALYSIS DIAGRAM
PS 64 School Construction Documents

Selected

Arch Tech III& IV
Fall 2021

Group: Linru Wang, Yiyi Gao, Shuyang Huang, Qingning Cao
Keeping the partial structure of the old ps 64, we redesigned it with hybrid use of CLT truss, precast concrete, and glass, bringing the students with a transparent atmosphere. Standing between east 9th and 10th streets, we kept the main entrance and added a new one on the other side. The original structure was excavated and a new truss structure was added, supported by four concrete staircases. New street circulations were introduced, and a wetland was built on the ground level to manage flood hazards. A basketball court was added on the northeast side, and two green roofs on top of the wings serve the same function as the wetland.

From the perspective, it’s clear that the new structure extends into the two wings. The truss with glass curtain walls gives a transparent bay in the middle.

With the precast concrete and large span of the clt truss, the middle floor of the center can be cantilevered without any support and leave the interior clean and transparent.
Egress Cellar-Ground

<table>
<thead>
<tr>
<th>Program/Room</th>
<th>Use of Space</th>
<th>Area (sq ft)</th>
<th>Max per Occupant</th>
<th>Total Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basketball Court</td>
<td>Domestic</td>
<td>4700</td>
<td>15</td>
<td>313,533,333.33</td>
</tr>
<tr>
<td>Women's Shower</td>
<td>Business Areas</td>
<td>421</td>
<td>100</td>
<td>4,210</td>
</tr>
<tr>
<td>Men's Shower</td>
<td>Business Areas</td>
<td>412</td>
<td>150</td>
<td>4,680</td>
</tr>
<tr>
<td>Restroom</td>
<td>Business Areas</td>
<td>173</td>
<td>150</td>
<td>2,550</td>
</tr>
<tr>
<td>Restroom</td>
<td>Business Areas</td>
<td>186</td>
<td>150</td>
<td>2,790</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>313,533,333.33</td>
</tr>
</tbody>
</table>

Ground Egress

<table>
<thead>
<tr>
<th>Program/Room</th>
<th>Use of Space</th>
<th>Area (sq ft)</th>
<th>Max per Occupant</th>
<th>Total Occupant Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobby</td>
<td>Assemble/Union (entire)</td>
<td>2076</td>
<td>15</td>
<td>150,333,333.33</td>
</tr>
<tr>
<td>Lounge</td>
<td>Business Areas</td>
<td>1854</td>
<td>100</td>
<td>18,540</td>
</tr>
<tr>
<td>Cafe</td>
<td>Business Areas</td>
<td>1332</td>
<td>250</td>
<td>2,660</td>
</tr>
<tr>
<td>Restroom</td>
<td>Business Areas</td>
<td>173</td>
<td>150</td>
<td>2,550</td>
</tr>
<tr>
<td>Restroom</td>
<td>Business Areas</td>
<td>184</td>
<td>150</td>
<td>2,760</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>150,333,333.33</td>
</tr>
</tbody>
</table>

Wall Types

1. **EXISTING EXTERIOR MASONERY WALL**
 - 1 1/2" - 1"

2. **ROOF BULKHEAD WALL**
 - 1 1/2" - 1"

Floor Plans

- **Level 1**: Basketball Court, Gymnasium, Women's Shower, Men's Shower, Restroom, Restroom, Lobby, Lounge, Cafe, Restroom, Restroom, Total
- **Level 2**: Basketball Court, Gymnasium, Women's Shower, Men's Shower, Restroom, Restroom, Lobby, Lounge, Cafe, Restroom, Restroom, Total
Vertical Transportation Components

1. Controller and Machine
 Elevator controllers are a system of regulating all or part of the motion of the elevator in relation to its destined floor. The elevator itself has a priority, which is determined by the controller. The controller is the brain of the elevator, controlling all functions such as door opening, closing, and movement. It is connected to the machine, which includes the motor and control system. The controller is typically located in the machine room.

2. Elevator Cab & Safeties
 Elevator cabs are equipped with safety mechanisms to ensure the safety of passengers. These include emergency stop buttons, fire alarm systems, and backup power systems. The cab is designed to withstand fire and impact. The safety mechanisms prevent the elevator from moving in case of an emergency.

3. Counterweights
 A counterweight is a weight that balances the elevator car, ensuring that the elevator moves smoothly and efficiently. It is moved up and down with the elevator car. Counterweights are typically made of materials such as steel and are designed to maintain a constant tension with the elevator car.

4. Elevator Doors
 Elevator doors are designed to ensure the safety of passengers by preventing them from closing on fingers or other body parts. They are designed to open and close smoothly and quietly. The doors are typically made of stainless steel or aluminum.

5. Floor Structures
 Floor structures are the floorboards that the elevator car rides on. They are designed to support the weight of the car and its passengers. The floor structures are typically made of steel or aluminum and are designed to be durable and reliable.

6. Buffers
 Buffers are installed at the bottom of the elevator shaft. They are designed to absorb the impact of the elevator car as it stops. They are typically made of rubber or a similar material and are designed to be durable and effective.

7. CMU Walls
 CMU walls are made from concrete masonry units (CMUs). They are fire-resistant and durable. CMU walls are commonly used in elevator shafts, machine rooms, and other areas where fire protection is required.

8. Hoistway
 The hoistway is the vertical space in which the elevator car moves. It is typically made of concrete or steel and is designed to support the weight of the elevator car and its passengers. It is equipped with safety mechanisms to ensure the safety of passengers.

9. Gearless Machine
 A gearless machine is an elevator machine that does not use gear teeth to transmit power. It is designed to be more efficient and quieter than traditional machines.

10. Brake
 The brake is a safety mechanism that stops the elevator car in case of a power failure. It is typically located in the machine room and is designed to be durable and effective.

11. Divider Beams
 Divider beams are used to divide the hoistway into sections. They are typically made of steel and are designed to be durable and effective.

12. Roller Guide
 Roller guides are used to guide the elevator car along the hoistway. They are typically made of steel and are designed to be durable and effective.

13. Crosshead
 The crosshead is a component that slides along the guide rail to move the elevator car. It is typically made of steel and is designed to be durable and effective.

14. Counterweight
 The counterweight is a weight that balances the elevator car. It is typically made of steel and is designed to be durable and effective.

15. Guide Rail
 The guide rail is a component that guides the elevator car along the hoistway. It is typically made of steel and is designed to be durable and effective.

16. Maintenance Platform
 The maintenance platform is a platform used for maintenance and repair work. It is typically made of steel and is designed to be durable and effective.

17. Embedded Pit Seed
 The embedded pit seed is a component that is used to anchor the elevator shaft to the ground. It is typically made of steel and is designed to be durable and effective.