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Abstract A gravitational theory and an experiment proposal to prove its ground
are being suggested here. An objective analysis of the classical and the modern
physics was given followed by what really are flaws in the theory of Special Rel-
ativity as concluded by a simple thought experiment on length contraction and
the removal of the unnecessary mass increase, because the effects of latter can be
emulated by those of the time dilation. Thus, the work that is presented here will
prove the entire Universe can be represented mathematically by using time dilation
and classical physics only. Basically, it extends General Relativity by predicting
the perihelion shift, the light bending, and the mass of the invisible Universe en-
compassing the visible one.

Regarding the experiment, a wavelength meter in motion aboard the Interna-
tional Space Station is proposed to test directly the invariance of light speed as
postulated by the Special Relativity. The æther by its definition is a substance
having a unique reference frame that fills the whole Universe and serves as a
medium for the propagation of light. If we extend the same idea by associating a
reference frame to the center of a gravitational body with the same spin then we
will have multiple graviton layers overlapping each other. Thus, the light speed
will be relative to that spinning local frame of reference and to detect a change in
light speed the observer will have to move against it. This can be done by sending
a laser beam in the same direction of the moving apparatus and by measuring the
difference in wavelength as we will further demonstrate.

Thus, this work will prove the importance of the experiment proposal with the
aforementioned theoretical findings which will lead to alternative fields of study
and technologies after it is proven to be valid.
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1 Introduction

The theory of Special Relativity, written by Einstein in 1905, is formed by the
following 2 postulates [1]:

Postulate 1 (principle of relativity).
The laws of physics are the same in all inertial frames of reference.

Postulate 2 (invariance of c).
The speed of light in free space has the same value c in all inertial frames of
reference.

The Michelson-Morley experiment [2] was interpreted in such a way that there
was no preferred frame of reference, thus no æther.

The experiment we are proposing here is to modernize the aforementioned
experiment by physically moving it against the Earth’s frame of reference. This
frame will be defined by a graviton layer that is emitted by a large body, in our case
the Earth, which will also have the same spin. Thus the failure to detect variation
of the speed of light by the Michelson-Morley experiment can be explained by
the fact both the reference frame and the Earth had the same spin. This reference
frame is also characterized by the source of the strongest gravitational acceleration.
Therefore this frame of reference is the planet Earth for all low orbit experiments
that tested Special Relativity, the Sun for probes launched in the solar system,
etc.

By sending a wavelength meter at a large velocity relative to the surface of
the Earth, such as the one of the International Space Station, we hypothesize that
there will be a measurable variance in the speed of light to detect with today’s
high-precision metrology [3].

The proposal is structured in the following way. In Section 2 we consider the-
oretical foundation of the Finite Theory which acknowledges time to be a non-
negative variable within a space that is characterized by the euclidean geometry.
We also demonstrate how the time dilation effects, the perihelion shift and the
bending of light can be explained by only using laws of Newtonian mechanics and
time dilation / contraction. Given we know the result of the measurement of the
light bending in advance, we can “reverse engineer” the entire Universe to deduce
all its characteristics, as is illustrated in Section 3. Our experimental proposition
described in Section 4. Finally, in Section 5 we conclude this work.

2 Foundation of the Finite Theory

2.1 Hypotheses of the Finite Theory

Finite Theory is directly associating the time dilation effects with the superposed
potentials of the predicted massless spin-2 gravitons that mediate gravitational
fields.

Finite Theory also considers time to be a positive variable within a space that is
characterized by the euclidean geometry, in contrast with General Relativity where
the space-time is represented using the non euclidean geometry. No prediction
made by General Relativity is in violation.

Definitions and hypotheses of the Finite Theory are as follows:
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Definition 1
A ’local reference frame’ moves coherently with the source of the local gravita-
tional field where the latter is in turn defined to be the strongest gravitational
acceleration. For example, if the observer and the observed object are nearby
a planet then the local reference frame is set on the planet’s surface, rotating
with the same angular speed. Note that this can be a non-inertial frame.

Definition 2
The kinetic energy is defined as 1/2mv2 (classical definition), with v being the
speed of the object with respect to the observer.

Hypothesis 1
The speed of light in free space has value c for any observer at rest relative to
the local reference frame. However, observers in relative motion with respect
to this frame will not measure the same value for c.

Hypothesis 2
The time dilation experienced by an object moving with respect to an observer
at rest relative to the local reference frame is directly proportional to the ratio
between the kinetic energy and the maximum kinetic energy of the object,
where the latter is the case when its speed equals c.

We’ll consider consequences from these hypotheses in the sections below.

2.2 Time Dilation Effect

2.2.1 Kinematical Time Dilation

We can represent time dilation using simpler techniques by interpolating dilation.
Indeed if we rationalize the kinetic energy gained by the object in motion according
to the maximum one it can experience at the speed of light then, due to the
Hypothesis 2, we have

pv =
mv2/2

mc2/2
. (1)

Since the time dilation percentage is the exact opposite of the speed ratio, we
define general time dilation in direct relation to the proportion as follows:

∆τv
∆τ0

= 1− pv = 1− v2

c2
. (2)

Here, ∆τv is the time interval as measured in the proper reference frame of the
moving observer and ∆τ0 is the time interval as measured by a stationary observer.
v is the speed of the moving observer as measured by the stationary one and
c = 2.998× 108 m/s is the speed of light.

We immediately observe that the prediction of the Finite Theory (2) diverges
from the special relativistic one

∆τv
∆τ0

=

√
1− v2

c2
≈ 1− v2

2c2
, (3)

where the last equality is valid for small velocities v � c. Nevertheless, when the
kinematical time dilation effect is combined with the gravitational one, Finite The-
ory predicts absolutely correct value of the time dilation cancellation altitude, as
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we will see in Section 2.5.2. In the following section, we will study the gravitational
time dilation effect thoroughly.

2.2.2 Gravitational Time Dilation

The difference in the gravitational potentials will be directly proportional to the
effects of the time dilation in the gravitational field. This effect is defined by the
relation

∆τ

∆t
=

1

h

(
h+

M

r

)
= 1 +

M

hr
. (4)

where, M is a mass of the large inertial body and r is the distance from its centre.
Under ∆τ we mean the interval of local time at the point situated at distance r
from the centre of the source of the body. ∆t is the interval of time measured by
a distant observer, or at r →∞.

The time dilation effect as defined by General Relativity is a special case of (4)
if h = −c2/G, where c is the speed of light and G = 6.674× 10−11 m3 kg−1 s−2 is
the gravitational constant. Surely, we know that in the weak field limit of General
Relativity, the time dilation effect in the gravitational field takes the following
form (see, for example, [4]):

∆τ

∆t
= 1− GM

c2r
. (5)

But according to the hypotheses of the Finite Theory, factor h in (4) is not a
constant but is a variable that depends on the superposed gravitational potentials.
For instance, in the solar system experiments where the gravitational potential
of the Sun is the source of the strongest gravitational acceleration, we suppose
h = hsolar. As we will see in the next subsection, the value of hsolar will be defined
by the observation of the deflection angle of light grazing the Sun.

2.3 Bending of Light in the Gravitational Field

Because of the time dilation effect, the speed of light traveling through a grav-
itational field and away from a gravitational source will be different from the
viewpoint of a distant observer.

According to (4), a distant observer notes that the light beam has the following
velocity, which depends on its position in the gravitational field:

v =
dr

dt
=
dr

dτ

(
1 +

Msun

hsolarr

)
= c

(
1 +

Msun

hsolarr

)
. (6)

In this relation, the local speed vlocal = dr/dτ = c = 2.998×108 m/s is constant
due to our hypothesis (Hypothesis 1). Also, we are neglecting the effects of length
contraction in the gravitational field, which results in the values of length interval
dr for both local and distant observers to be equal.

A distant observers can interpret the slowdown of the light speed as the result
of some non-null effective index of refraction:

n(r) ≡ c

v
=

(
1 +

Msun

hsolarr

)−1

≈
(

1− Msun

hsolarr

)
. (7)
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The last approximated relation here is explained by the fact we suppose |Msun/hsolar|
� r. This condition is fulfilled for most of the real astrophysical objects, as we
will later see.

The position dependent index of refraction causes the bending of light, which
will be measured by distant observer. For the refractive index (7), the value of
deflection angle is as follows:

δ = − 2Msun

hsolarrsun

, (8)

where rsun is the radius of the source of gravity. This relation is a generalization
of the result derived by Einstein himself. Details of the derivation can be found in
[5].

Observed value of the deflection angle equals to (see [6], [7])

δobs =
4GMsun

c2rsun

= 0.847× 10−5 rad , (9)

Both General Relativity and Finite Theory can adjust the theoretical result
(8) with the observed value (9), but in different ways:

1. To explain the experiment in General Relativity, which supposes hsolar = h =
− c2/G = − 1.35 × 1027 kg/m [see Section 2.2.2], we have to introduce addi-
tional length contractions in the gravitational field, as is explained in [4].

2. In Finite Theory, we are using the observed value of the deflection angle to
define hsolar:

hsolar = − c2

2G
= −0.675× 1027 kg/m . (10)

It is important pointing out here that no additional length contraction in the
gravitational field is required in this case.

In the following examinations, we accept the value (10) for all the others
tests at the solar system scale. We also note that the aforementioned condition
|Msun/hsolar| � r is confirmed due to that |Msun/hsolar| = 2GM/c2 = Rs is the
well known Schwarzschild radius. When we consider tests at the scale of the solar
system, we can always suppose r � Rs.

2.4 Explanation of the Perihelion Shift

The bending of light and perihelion shift of planets at the solar system scale are
the two definitive tests of General Relativity. As we have seen in the previous
subsection, bending of light can be explained by the Finite Theory without any
length contraction in the gravitational field. In this section, we’ll also use the Finite
Theory to explain the perihelion shift for all planets.

As we know, the radial motion of a planets in the gravitational field of the Sun
using Newton’s gravity can be described by the relation

mṙ2

2
+ V (r) = E , (11)
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where V (r) is defined by

V (r) = − GmM

r
+
L2

2mr2
. (12)

Here, m is a mass of planet, M — mass of the Sun, E — full non-relativistic
energy of the planet, and L is the value of conserved angular momentum. Variable
r = |r| is the distance to the Sun, which is supposed to be situated in the centre
of coordinate system, and the dot means differentiation with respect to t. The
second term in V (r), in contrast to the attractive Newton’s potential (first term),
describes the action of repulsive centrifugal forces.

The general-relativistic investigation of the trajectory of a massive object in
the spherically-symmetric gravitational field can also be described in terms of the
effective gravitational potential (see, for example, [4]):

mṙ2

2
+ Veff(r) = E , (13)

Veff(r) = − GmM

r
+
L2

2mr2

(
1− 2GM

c2r

)
. (14)

We note that this effective gravitational potential differs from Newton’s poten-
tial (12) by the small factor 1−2GM/(c2r), which can be related to the parameter
hsolar = − c2/2G that was in turn determined in (10):

1− 2GM

c2r
=

1

hsolar

(
hsolar +

M

r

)
= 1 +

M

hsolarr
. (15)

Thus, the effective gravitational potential of General Relativity can be written
in the form

Veff(r) = − GmM

r
+
L2

2mr2

(
1− 2GM

c2r

)
, (16)

Veff(r) = − GmM

r
+
L2

2mr2

(
1 +

M

hsolarr

)
. (17)

As is demonstrated in [4], such correction to the gravitational potential leads
to the perihelion shift of the elliptical orbit per unit revolution by the angle

δϕ =
6πGM

c2a(1− e2)
, (18)

where a is the semi-major axis of the orbit and e is it’s eccentricity. Again, by
solving the parameter hsolar for the framework of the Finite Theory, this relation
can be written in the form

δϕ =
6πGM

c2a(1− e2)
= − 3πM

ahsolar(1− e2)
. (19)

We know conclude (see [6], [7]) that the perihelion shift (19) agrees with obser-
vational evidence not only for the Mercury, but for all planets of the solar system.
Thus, the perihelion shift can be successfully explained within a Newtonian frame-
work if the correction (17) to the Newtonian potential energy is considered. The
cause of such correction was discussed in [8]. This section has demonstrated that
the additional term in (17) will appear as the result of the correction to the velocity
because of the effects of the time dilation that also acts on planets.
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2.5 GPS and Time Dilation Cancellation Altitude

The gravitational time dilation and the kinematical time dilation both play a
role on GPS satellites. The former is affected by the altitude whereas the latter
is affected by its speed. We will study here the correct altitude where both ef-
fects cancel out. Remarkably, Finite Theory and General Relativity give the same
cancellation altitude though using completely different time dilation relations.

First, we consider time dilation cancellation altitude from the viewpoint of
General Relativity.

2.5.1 Time Dilation Cancellation Altitude in General Relativity

Let’s consider the artificial satellite, rotating around the Earth with a radius of
Rorbit. Because of the gravitational time dilation [see (5)], a stationary observer
at altitude Rorbit > Rearth should feel accelerated flow of time with respect to the
stationary observer on the Earth (Rearth is the radius of the Earth):

∆τorbit
∆τearth

=
1 + M

hRorbit

1 + M
hRearth

, h = − c2

G
(20)

But a satellite is not stationary, it rotates with a tangential velocity v, which
leads to additional relativistic effect:

∆τv
∆τearth

=

√
1− v2

c2
≈ 1− v2

2c2
. (21)

Here, we are using the low-velocity approximation (v � c), which is correct for real
GPS satellites. As we can see, relativistic effect is the opposite to the gravitational
one, which makes it possible to find the time dilation cancellation altitude.

Finale relation, which takes into account both time dilation effects, can be
written in the form:

∆τsatellite
∆τearth

=

(
1 + M

hRorbit

)(
1− v2

2c2

)
1 + M

hRearth

, (22)

∆τsatellite
∆τearth

≈ 1 +
M

hRorbit

− M

hRearth

− v2

2c2
, (23)

where the last approximate equality is valid in the newtonian limit Rearth, Rorbit �
M/h. Also, under these conditions we can use the newtonian relation for the
velocity of satellite, rotating on the circular orbit v2 = GM/R, which results in
the relation

v2

c2
=

GM

c2Rorbit

= − M

hRorbit

. (24)

Consequently, the radius of orbit, at which cancellation occurs, is found to be

∆τsatellite
∆τearth

≈ 1 +
3M

2hRorbit

− M

hRearth

= 1, (25)

Rorbit =
3Rearth

2
, (26)

which corresponds to the altitude H = Rorbit −Rearth = Rearth/2 ≈ 3185 km.
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2.5.2 Time Dilation Cancellation Altitude in Finite Theory

For the same artificial satellite, Finite Theory supposes the gravitational dilation
of time for static observers to be defined by [see (4) and (10)]

∆τorbit
∆τearth

=
1 + M

hsolarRorbit

1 + M
hsolarRearth

, hsolar = − c2

2G
. (27)

For the kinematical time dilation effect in Finite Theory we have (see the
explanation in Section 2.2.1):

∆τv
∆τearth

= 1− v2

c2
. (28)

Though both kinematical and gravitational time dilation effects predicted by
Finite Theory differ from those effects in General Relativity, combined effect to
the artificial satellite appears to be the same in both theories. Indeed, combining
(27) and (28) we get

∆τsatellite
∆τearth

=

(
1 + M

hsolarRorbit

)(
1− v2

c2

)
1 + M

hsolarRearth

, (29)

∆τsatellite
∆τearth

≈ 1 +
M

hsolarRorbit

− M

hsolarRearth

− v2

c2
, (30)

For the orbital velocity of satellite we have v2 = GM/Rorbit, which results in the
relation

v2

c2
=

GM

c2Rorbit

= − M

2hsolarRorbit

. (31)

Thus, we can write

∆τsatellite
∆τearth

≈ 1 +
3M

2hsolarRorbit

− M

hsolarRearth

. (32)

Cancellation effect take place at altitudes where ∆τsatellite = ∆τearth, which
is fulfilled at the orbital radius Rorbit = 3Rearth

2 . Corresponding altitude H =
Rorbit − Rearth = Rearth/2 ≈ 3185 km absolutely coincides to the altitude derived
in Section 2.5.1 in the frames of General Relativity.

3 Cosmological Implications

Based solely on the measurement of the light bending, we’ll be able to “reverse en-
gineer” the entire Universe to find out its main characteristics. We’ll now illustrate
how it can be done.
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3.1 Parameters of the Invisible Universe

3.1.1 Fudge Factor of the Invisible Universe

An inside-the-sphere gravitational potential distribution formula of the entire vis-
ible Universe predicts the following value for h:

|hvisible| =
Mvisible(3R

2
visible − d2)

2R3
visible

. (33)

Here, Mvisible = 1053 kg is the mass of the entire visible Universe, Rvisible =
4.4 × 1026 m is it’s radius, and d is the distance of the Milky Way in the visible
Universe from its centre. In the following, we suppose d = 0 m. Therefore, we can
deduce

hvisible = −3Mvisible

2Rvisible

= − 0.34× 1027 kg/m . (34)

As we can see, the value of hvisible is not equal to the value hsolar = −0.675×
1027 kg/m which was derived in Section 2.3. This can be explained by the presence
of some invisible constituents encompassing the visible Universe. Thus, we can
decompose

hsolar = hvisible + hinvisible . (35)

Thus by solving hinvisible we get

hinvisible = hsolar − hvisible = − 0.335× 1027 kg/m . (36)

In the following section, we will use the resulting value of hinvisible to solve the
mass of the invisible Universe.

3.1.2 Mass of the Invisible Universe

Here we assume the invisible Universe follows the same inside-a-sphere distribution
of matter as the visible one, thus

hinvisible = −3Minvisible

2Rinvisible

, (37)

which results in

Minvisible = −2hinvisibleRinvisible

3
= 2.45× 1055 kg . (38)

To calculate the value of Minvisible, we have supposed Rinvisible = 1.1× 1029 m and
used the result obtained in (36).

To compute Minvisible directly from the light bending δ we can also use the
following relation:

Minvisible =
Rinvisible(4RvisibleMsun − 3δrsunMvisible)

3δrsunRvisible

. (39)
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Fig. 1 Hubble’s law

3.2 Approximation of the Center and Velocity of the Visible Universe

Dark energy is an energy filling all of space that has been hypothesized to expand
the entire Universe but remains undetected. There are many problems arising from
this idea but the main one is that in order to expand the Universe at an accelerated
rate, the amount of energy required to overcome gravitational attraction would
require an ever increasing sum of energy, which is in direct violation of the law of
conservation.

3.2.1 Small Scales

The Hubble’s law defines the rate of the expansion of the Universe with the speed
of the distant galaxies vapparent as seen from the Milky Way with:

vapparent = H0 x , (40)

where H0 = 2.26 × 10−18 s−1 is a Hubble’s constant and x is a distance to the
remote galaxy. Hubble’s law is illustrated in Fig. 1.

On the other hand Finite Theory applied on the scale of the Universe is able to
explain the behavior of the Universe without such energy. Indeed, if we consider the
Universe to be the result of a Big Bang then all galaxies must have a certain speed
and a specific direction. The latter is unimportant because the observed effect
will always be the same regardless of the directions but if we try to represent the
speed of the observed galaxies using Finite Theory where h is null because it is
simplified, given it must not be encompassed by anything else, then we will have:

vapparent =
Mvisible/|svisible|

Mvisible/|x− svisible|
vvisible . (41)

where svisible = − 1.33× 1026 m is a position of the center of the visible Universe,
and vvisible = c.

After simplifying and subtracting the speed of the observer from his own ob-
servations, we will have the following relation. Note that the speed of the observer
vvisible needs to be subtracted because the observer himself is moving and is subject
to the same speed of the visible Universe (vvisible):

vapparent =
vvisible|x− svisible|

|svisible|
− vvisible . (42)



Proposal for Wavelength Meter in Motion to Test the Invariance of Light Speed 11

Fig. 2 Hubble’s law at large scales

This means svisible, or the position of the center of the Universe, is actually
solvable by equaling (40) and (42):

H0 x =
vvisible|x− svisible|

|svisible|
− vvisible , (43)

which results in
svisible = − vvisible

H0
. (44)

We’ll note here that the speed of the visible Universe is the only variable that
is found by a simple graphical best fit as we’ll see in the next section for larger
scales.

3.2.2 Larges Scales

For larger scales, the Hubble’s law is no longer valid and the speed given a certain
distance (cosmological redshift) is given by [9]:

vapparent = c log(1 + z) . (45)

As a first gross estimate, we can suppose the value of redshift z linearly depend
on distance x: z = x/|svisible| = 7.6746× 10−27 x. Consequently, we have

vapparent = c log(1 + 7.6746× 10−27 x) . (46)

This dependence is illustrated in Fig. 2. By considering the visible Universe
to be encompassed by a greater invisible Universe as found earlier, Finite Theory
can easily represent the same curve. To do so we will simply add the scale factor
of the invisible Universe hinvisible = 3.34× 1026 kg/m:

vapparent =
vvisible (Mvisible/|svisible|+ hinvisible)

Mvisible/|x− svisible|+ hinvisible

− vvisible . (47)

By using the aforementioned approximation [see (44)], we can replace svisible:

vapparent =
vvisible

(
H0Mvisible

|vvisible| + hinvisible

)
Mvisible

|x+vvisible/H0| + hinvisible

− vvisible . (48)

By simply retrofitting vvisible (to the maximum speed of c) and using the pa-
rameters of the visible Universe Mvisible = 1053 kg and H0 = 2.26 × 10−18 s−1,
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Fig. 3 Velocity-distance relation predicted by the Finite Theory

we’ll get a curve that is the same as the one obtained by the observed cosmological
redshift of the distant galaxies (see Fig. 3). It is important to mention here that we
consider the visible Universe to be a point mass thus it remains an approximation
but a more complex analysis will need to be put in place if we wish to obtain
more precise results. It is therefore implied that using the mathematics of Finite
Theory, it is possible to find a distance from the center and also the speed of the
visible Universe. Unfortunately it still is impossible to deduce its direction given
there is no external point of reference we can relate to.

4 Variance of c and Wavelength in a Graviton Layer: Experiment
Proposal

Even if gravitons have not been directly detected and might not even be possible
[10], we hypothesize to detect its presence indirectly by observing a variance in the
wavelength of a photon and therefore a variance in c from the strongest graviton
layer it is subject to. We are testing the absoluteness of the reference frames, as
is demanded by the hypotheses of the Finite Theory.

Given gravity obeys the principle of superposition, we will isolate the local
reference frame that roots the absoluteness of the kinetic time dilation amplitude
using the gravitational acceleration strength:

aearth = − GMearth

(x− i)2 , (49)

asun = − GMsun

(x− j)2 , (50)

Here, Mearth = 5.9736× 1024 kg is the mass of the Earth, Msun = 1.98892× 1030

kg is the mass of the Sun, i = − 6.371 × 106 m is a position of the center of the
Earth and j = 1.49597870691 × 1011 m is a position of the Sun. The behavior of
both accelerations is illustrated in Fig. 4.

Thus the reference frame for altitudes lower than the following is defined by
the Earth:

x =
(j − i)

√
Mearth ×Msun + i×Msun − j ×Mearth

Msun −Mearth

, (51)

x = 2.5245× 108 m . (52)
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Fig. 4 Gravitational acceleration of the Earth and the Sun (m/s2) vs. altitude (m)

The observer and the wavelength meter are both subject to time dilation rel-
ative to the surface of the Earth so both effects cancel out and as a result the
observer sees a normally functioning wavelength meter. The wavelength is relative
to the angular speed of the surface of the Earth so having an observer moving
against it will alter what is measured. Furthermore the frequency (cycles per sec-
ond) will be the same in all frames of reference. Thus the time dilation have no
effect here and only the frames of reference are challenged.

By sending the experiment at a speed close to the speed of sound (we suppose
the speed of the experiment to be 6125.22 m/s), it will be sufficient to detect a
change in wavelength while energy is conserved:

E =
h(c− v1)

λ1
=
h(c− v2)

λ2
. (53)

Thus, if the stationary observer (v1 = 0 m/s) measures λ1 = 6.5 × 10−7 m,
experimenter having velocity v2 = 6125.22 m/s measures

λ2 =
(c− v2)λ1
c− v1

= 6.49987× 10−7 m . (54)

Here, we have defined the light speed to be c = 3× 108 m/s.
As the frequency will be the same in all frames of reference and because the

wavelength won’t be, the resulting speed of light also won’t be constant, relative
to the observer in motion. For the stationary observer on the surface of the Earth,
which observes the speed of light to be c1 = c = 3 × 108 m/s and a wavelength
λ1 = 6.5× 10−7 m, we have

ν1 =
c1
λ1

= 4.615384615384615× 1014 s−1 . (55)

At this point we can find the new speed of the light beam in motion, which
will be measured by an observer also in motion having velocity of v2 = 6125.22
m/s:

c2 = λ2ν2 = λ2ν1 = 2.9999399999999994× 108 m/s , (56)

where we have merged the results (54) and (55).
For a wavelength meter with an accuracy of ±1.5 pm then we will be able

to confirm if the change in wavelength (and, correspondingly, the change of light
speed) occurs. The predicted difference of λ1−λ2 = 1.3×10−11 m is large enough
to be measured.
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5 Conclusion

As we have shown, Finite Theory is a viable candidate to be a new theory of
gravity, which predicts a slightly different kinetic time dilation effects for particles
traveling at high speeds, but an exact prediction for the bending of light and
the perihelion shifts for planets in solar system (see Section 2). Moreover, Finite
Theory allows to establish new properties of the invisible part of the Universe and
explains some peculiar properties of late-time cosmological evolution (Section 3),
which is based on two simple hypotheses.

Given the important findings we were able to deduce, we believe that Finite
Theory deserves further theoretical and experimental investigation. The role of
the experiment we have described in Section 4 is crucial for the recognition of
the Finite Theory. It will possibly start new era in the gravitational physics and
engineering.

References

1. A. Einstein, Annalen der Physik 10 322, 891 (1905). DOI 10.1002/andp.19053221004
2. A.A. Michelson, E.W. Morley, American Journal of Science 34, 333 (1887)
3. Luna PHOENIX 1200, Tunable laser module & wavemeter (2018). URL http://lunainc.

com/wp-content/uploads/2012/11/PHOENIX_1200HS_Data-Sheet_Rev07.pdf
4. Ta-Pei, Relativity, Gravitation and Cosmology. A Basic Introduction (Oxford University

Press, 2005)
5. Ta-Pei, Einstein’s Physics. Atoms, Quanta, and Relativity Derived, Explained, and Ap-

praised (Oxford University Press, 2013)
6. C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press,

1993)
7. C.M. Will, Living Rev 17 (2014)
8. R. Wayne, The African Review of Physics 10, 0026 (2005)
9. D. Xiaoming, The geometric characteristics of the universe (2018). URL http://www.

survivor99.com/dxm/Deng01.pdf
10. T. Rothman, S. Boughn, (2006)

http://lunainc.com/wp-content/uploads/2012/11/PHOENIX_1200HS_Data-Sheet_Rev07.pdf
http://lunainc.com/wp-content/uploads/2012/11/PHOENIX_1200HS_Data-Sheet_Rev07.pdf
http://www.survivor99.com/dxm/Deng01.pdf
http://www.survivor99.com/dxm/Deng01.pdf

	Introduction
	Foundation of the Finite Theory
	Cosmological Implications
	Variance of c and Wavelength in a Graviton Layer: Experiment Proposal
	Conclusion

