PORTFOLIO

COLUMBIA UNIVERSITY, NEW YORK

GSAPP M.S. ADVANCED ARCHITECTURAL DESIGN
Throughout my works, I’ve focused on creating designs that prioritize equity and sustainability. In my portfolio, my three design studio projects challenge traditional hierarchies and promotes inclusivity and accessibility while prioritizing sustainability and environmental consciousness.

The first project NEW YORK CITY HALL STATION emphasizes the importance of interconnectedness and community. I wanted to bridge the gaps between public, transit, and political networks, creating a space that fosters inclusivity and accessibility.

The second project RE-ASSEMBLED BRUTALIST repurposes existing materials and provides much-needed affordable housing options. I’m advocating for a more socially responsible and environmentally conscious approach to architecture.

The third project THE ‘CURSED’ EDEN GARDEN centers around the Spear Thistle, a plant that’s often considered unwanted. I wanted to challenge traditional notions of beauty and value and develop ecological systems that prioritize environmental health. This project advocates for a more equitable and sustainable approach to design that centers on nature and its inherent value.

You’ll also see a range of photographs that explore the beauty of different places and the visual narratives that emerge from the interplay of architectural elements. Each photo is a unique expression of my fascination with how architecture shapes our experiences and creates meaning.
The New York City Hall station project aims to transform the historical landmark into a transportation hub that connects the political center of the city to the extensive subway system. This project is inspired by the idea of reversing the hierarchy of roles and territory between government and citizens, by expanding the government into a transit network.

The New York City Hall, built in 1812, is one of the oldest city halls that still serves the governmental function, with about 500 staff working in the building. However, the building is not easily accessible to citizens due to layers of fences and security checkpoints.

One of the most noticeable elements of the New York City Hall is the glass skylight openings on the plaza, which reveal the existence of the historical City Hall Loop. This loop, built in 1904 as part of the earliest IRT lines, is one of the finest civic spaces and the center of the New York subway system. However, it has been long forgotten by the city since it was abandoned in 1945.

Ann's design proposes transforming the New York City Hall into a station that engages the public at different levels, including the City Hall park, transit center, and governmental facilities.
PHASE 1: FROM BOTTOM-UP (MIDTERM)
A City Hall for Equitable Power-Sharing with Citizens
SUNKEN PLAZA TRANSIT CENTER VIEW, SHOWING RAMP CONNECTING TO CITY HALL
TRANSIT CENTER UNDER THE VAULTS, ACROSS MIRROR IS THE COURTHOUSE
PHASE 2: UNDULATING TRANSIT HUB (FINAL)
NEW YORK CITY HALL AS A STATION BRIDGING PUBLIC AND SUBWAY AND
POLITICAL NETWORK
INTERIOR VIEW SHOWING CITYHALL EXIT TO UNDERGROUND TRANSIT CENTER
STREET VIEW SHOWING MAIN ENTRANCE AND NEW CITY HALL PARK ON TOP
STREET ENTRANCE FACING BROOKLYN BRIDGE & ORIGINAL CITY HALL AT BACK
PHYSICAL MODEL
Based on the concept of re-assembling the existing condition of the AT&T long lines building located in Tribeca, lower Manhattan, this project managed to achieve the novel way of reusing historical sites adaptively.

Instead of discarding the existing material as non-degradable landfill, our strategy is to adopt the granite facade panels, concrete floor slabs, terracotta bricks, concrete blocks, and especially the abundant copper wire buried inside the walls. With all those adequate amounts of material, we would be able to design this renovation project with minimum input of new materials.

While these existing materials are being preserved, we re-assembled them into the new form of facade panels. In the unit of each bay, there are steel frames installed on existing superstructures to connect the variety of materials with different depth and thickness. By arranging them into several types of panel modules, we manage to adopt the granite, concrete, terracotta and copper into a myriad material facade. To contrast the thickness and heaviness of the panels over residential units, the public programs are covered with thin glass curtain walls to show off the lively activities brought by diverse public facilities. The circulation of public and residential are separate spatially but connected visually. Both sectors spread vertically in the way of intertwining like DNA chains. The way they connect is through the special corridor leading residents to the public programs at every floor like the bond in between DNA chains.

What's more, with the existing 17' floor height, the residential units could be manipulated into apartments with sloped roofs that allow the natural light to come through the top into deep floor plates. Between the residential units and public programs are the co-living space accommodating the communal kitchen, multimedia living space, reading lounge and social laundry. All these sub-programs are designed to create living quality and encourage interaction.
PHASE 1: RECLAIM SPACE (MIDTERM)
PHASE 2: RECLAIMING MATERIAL (FINAL)

SLOPED ROOF APARTMENTS & CONNECTING CORRIDOR

PUBLIC CIRCULATION & DIVIDING PARTITION

SOLID MATERIAL REUSING PANELS & GLASS CURTAIN WALL
Hollow Terracotta Blocks: 768,984 square feet
Copper Cable: 1,278,060 linear feet
Concrete Masonry Unit (CMU): 201,912 cubic feet
Reinforced Precast Concrete Panels: 413,490 square feet
Granite Slabs: 19,332 slabs
Total Solid Facade Area : 71,584.82 Square Feet
Total Solid Facade Volume : 178,962.05 Cubic Feet
Total Glazing Area : 45,210.45 Square Feet
Solid Facade Ratio: 61.3%
Glazing Facade Ratio: 38.7%

RESIDENTIAL PROGRAM

PUBLIC PROGRAM
VIEW SHOWING TYPICAL APARTMENT WITH MATERIAL REUSING PANELS
VIEW SHOWING COMMUNAL KITCHEN LOOKING THROUGH PUBLIC GYM
SWIMMING POOL LOOKING OVER GROUND FLOOR PLAZA DURING WINTER
PHYSICAL MODELS
This project was inspired by the Bible Genesis, which tells the story of God punishing Adam and Eva through the toil of eating food from the field and growing painful thistles. We rearticulate Genesis by illustrating a hypothetical phenomenon of future New York City as the Cursed Eden Garden. Spear thistle has been considered a noxious, non-native, invasive weed that has been banned by communities and even regulated by law. We apply different actors to trigger the four distinct forms of spear thistles to allow this weed to grow and reproduce, feed insect species, and help produce food in the community garden. However, human society tries to build “Eden Garden” upon the waste colonialism towards other regions worldwide. Spear Thistle practices her physical property as a litter collector, possibly mitigating the waste colonialism process and turning it into the curse originated by human actions. In this project, we examine the relationship between “bad” plants, the ecosystem, and human society by showing the consequence of extreme situations of so-called invasive plant spear thistle and environmental clean-up human actions.
LOCATION & CONDITION | DVITA
AMSTERDAM AVE & 19TH

other unwelcomed plastics
dead leaves & branches in crack
food waste & litter
citi bike docks since fall 2017
limited sunlight per day
ants, bugs, flies
spider web

SCALE SYSTEM
“Good or bad” is a Scale System!

Hurt
Feed
Protect

GSAPP MSAAD
ANN. YUTING LONG
THREE SYSTEMS

- Community Garden
- Poop Pipe
- Seed Pipe
- "Dvita" Spear Thistle
- Croton Aqueduct
- Bike Dock
- Citi Bike
- Water System
- Scale System
- Scattering System

- Henhouse
- Goldfinch
- Butterfly
- Bumblebee
- Chicken
- Rat
- Moisture
- Oxygen
LITTER COLLECTOR

litter caught on thistle spikes

heavier litter on ground

degradable (food) waste

non-degradable (bottle, can) waste

chicken manure compound

fabric waste (cloth, sheets)
The Seagram Building is a modernist masterpiece, but its energy efficiency and carbon footprint have long been a cause for concern. Through thorough research, we’ve discovered that the building has extremely high embodied carbon and low energy efficiency, making it a prime target for a sustainable makeover. The design focuses on optimizing the building’s vacant floors and transforming them into public facilities that bring economic benefits. Additionally, we propose the installation of operable perforated louver panels to improve energy efficiency and create a comfortable and healthy indoor environment. To optimize performance, the perforation rate and installation density of the panels will vary based on the radiation analysis of the Seagram Building. I’ll also be using four different types of louver panels, each with a different perforated rate, to cater to the different privacy and daylighting needs of different programs. The panels will be operable and their angle will respond to the direction of sunlight and time of day. Overall, this Seagram Building makeover project aims to breathe new life into this iconic building while also addressing its sustainability challenges.
It is time no longer to praise the Seagram Building, but to bury it.

The Seagram building was designed in the oil-rich 1950s, with energy prices dropping fast and hopes of future fusion power that would, as the chair of the US Atomic Energy Commission put it in 1954, make electricity ‘too cheap to meter’. Almost no-one realised how dangerous carbon emissions from oil and gas could become.

The Seagram Building’s hard-pressed environmental control systems give the building an Energy Star score of only 3 out of 100, making it one of New York’s most energetically wasteful office blocks. High energy efficiency starts at 75 on the Energy Star scale. Brass mullions and spandrels provide a purified expression of the idea of the curtain wall, ‘energising’ the building by the warmth of their colour, as another former New York Times critic, Carter B Horsley, put it. With 1950s fossil fuels, it did not seem to matter that they also radiate the warmth of the building out into the winter cold of New York, or collect the sun’s heat in summer, making them among the main causes of the building’s exorbitant energy consumption for heating and cooling.
ANN LONG’S PHOTOGRAPHY COLLECTION
ARCHA4987_001_2023_1 - ARCHITECTURAL PHOTOGRAPHY
COLUMBIA UNIVERSITY | NEW YORK
GSAPP | M.S. AAD
MICHAEL VAHRENWALD | SPRING 2023
ANN LONG

Welcome to my personal photography collection, which features an array of captivating images that I have captured during my travels to different places. This collection is a testament to my passion for photography and my desire to explore and document the beauty of different architectural structures. The photos in this collection showcase some of the most iconic landmarks and structures from various locations, including the Whitney Museum, China Town, Brooklyn Bridge, Columbia Morningside Campus, and Kanagawa Institute of Technology in Japan. Each location has its unique charm, and my camera lens has captured the essence of each location in a distinct and captivating way.

In the second part of my photography class, I delved into various ways of photographing architectural models. This involved exploring standard depictions where the images closely resemble a full-scale construction and alternative approaches that play with what the architectural model can communicate. As you peruse through this collection, I hope that you will experience the beauty and majesty of each location captured through my lens. Each photograph tells a unique story, and I hope that my work will inspire and evoke a sense of awe and wonder in you.